
On variance, injectivity,
and abstraction

Jacques Garrigue

Nagoya University



J. Garrigue — variance, injectivity, and abstraction 1

PR#5985: losing injectivity

module F (S : sig type ’a s end) = struct

include S

type _ t = T : ’a -> ’a s t

end

module M = F (struct type ’a s = int end)

let M.T x = M.T 3 in x

- : ’a = <poly> (* type is lost *)

After expanding s, the definition of M.t is actually:

type _ t = T : ’a -> int t

But here ’a is not marked as existential.



J. Garrigue — variance, injectivity, and abstraction 2

Injectivity

In order to protect about this unsoundness, all variables

appearing in type definitions must be bound

– either appear inside the type parameters

– or existentially bound (only in GADTs)

Inside type parameters, these variables must be injective:

– knowing the parameter must be sufficient to

determine the type of the variables



J. Garrigue — variance, injectivity, and abstraction 3

Injectivity and variance

In OCaml, injectivity checking relies on variance inference.

The variance of a parameter is either

– explicit for abstract and private types, or constrained parameters

– inferred from its occurences otherwise

bivariant = ∅ (→ not injective)

{pos} = covariant contravariant = {neg}

invariant = {pos, neg}

	 R

R 	



J. Garrigue — variance, injectivity, and abstraction 4

Variance of constrained parameters

Since version 1.00, OCaml allows constrained type parameters:

type ’a t = T of ’b constraint ’a = ’b list

Rules for checking variance in that case become more complicated:

– constrained parameters’ variance must be explicit

– the variance of type variables inside constrained parameters must

be weaker or equal than inside the body of the definition

type +’a t = T of ’b constraint ’a = ’b list (* ’b covariant *)

type ’a r = ’a -> int (* contravariant *)
type +’a t = T of ’b constraint ’a = ’b r (* Fails *)

(* ’b contravariant in parameters but covariant inside *)



J. Garrigue — variance, injectivity, and abstraction 5

Variance subsumption

In OCaml, the variance of a parameter is allowed to be weakened

through abstraction.

module M : sig type +’a u end = struct type ’a u = int end

This is correct for the type themselves, but the information becomes
wrong when using it for type parameters.

module F (X : sig type ’a r end) = struct
type +’a t = T of ’b constraint ’a = ’b X.r

end
module N = F (struct type ’a r = ’a -> int end)

By assuming r invariant, ’b is inferred as invariant from the

parameter of t, which subsumes the covariance of the body.

But in N, ’b becomes contravariant, which is wrong.



J. Garrigue — variance, injectivity, and abstraction 6

Fixing variance

If we want to approximate the variance of types inside parameters,

we need to refine the definition.

– traditional variance subsumption defines a lower bound on the

variance of parameters

– we need to add upper bound information, to be sure that

parameters cannot have a stronger variance

If we represent the lower bound by the two flags may pos and may neg,

we can introduce two flags pos and neg to guarantee the presence of

occurences.

By definition pos ⇒ may pos and neg ⇒ may neg.



J. Garrigue — variance, injectivity, and abstraction 7

Further refinements

While adding an upper bound to variance is sufficient for soundness,

it doesn’t handle all cases of injectivity.

– We add a special flag inj to denote guaranteed injectivity.

pos ∨ neg ⇒ inj

We can set inj for all parameters of concrete type definitions

(by opposition to abbreviations), since they do not vanish.

– By symmetry we also add a flag inv to denote strong invariance.

It is added automatically to parameters of concrete definitions

which are both pos and neg.

inv ⇒ pos ∧ neg



J. Garrigue — variance, injectivity, and abstraction 8

Composing variances

To determine the flags corresponding to an occurence, one has to

compose them. Upper and lower bound can be handled separately.

◦ may pos may neg

may pos may pos may neg

may neg may neg may pos

◦ inj pos neg inv

inj inj inj inj inj

pos inj pos neg inv

neg inj neg pos inv

inv inv inv inv inv

– an occurence in an inj context gives at most inj

– an inj occurence in an inv context is sufficient to obtain inv



J. Garrigue — variance, injectivity, and abstraction 9

Composing variances

– inj ◦ inv = inj

Since an injective parameter may be changed through subtyping,
it cannot guarantee invariance.

type ’a t = T
let f x = (x : ’a ref t :> bool t)

– inv ◦ inj = inv

Reciprocally, an injective parameter may only be changed
through subtyping, so it becomes invariant in an invariant
context.

type ’a t = T
let f x = (x : <m:int> t ref :> < > t ref) (* fails *)



J. Garrigue — variance, injectivity, and abstraction 10

OCaml 4.01 status

– Full variance inference is done, using 7 flags.

The 7th is a special case of may neg, needed for principality.

– However, variance annotations are only available for may pos and

may neg.

All abstract types excepted predefined ones (and local ones) are

assumed non-injective. Some programs will not type anymore.

– For GADT indices, it is suggested to use concrete (injective)
types rather than abstract ones.

type zero = Zero
type ’a succ = Succ

Since a GADT index parameter is always invariant, injectivity is

enough.



J. Garrigue — variance, injectivity, and abstraction 11

Future improvements ?

(With Jeremy Yallop and Leo White)

– Add injectivity annotations for abstract types.

type #’a s (* also #+’a or #-’a *)
type _ t = T : ’a -> ’a s t

– Add new types for isomorphic abbreviations (cf. Haskell)

module M : sig type #’a t val f : int -> [‘pos] t end =
struct

type ’a t = new int
let f x = (abs x : int :> ’a t)

end

◦ Similar to private, but subtyping works both ways

◦ Useful in many situations (efficiency, runtime types, . . . )

◦ May delay coercions to the signature



J. Garrigue — variance, injectivity, and abstraction 12

Other problems with abstraction

– One cannot prove the uniqueness of abstract types.

type (_,_) eq = Eq : (’a,’a) eq
module M : sig type t val eq : (t,int) eq end

= struct type t = int let eq = Eq end

– One doesn’t know whether an abstract type is contractive.

(* Using -rectypes *)
module Fixpoint (M : sig type ’a t end) =

struct type fix = fix M.t end
Error: The type abbreviation fix is cyclic

– One cannot know whether an abstract type may be float.

module M : sig type t type r = {x:t; y:t} end =
struct type t = float type r = {x:t; y:t} end

Error: Signature mismatch: ...



J. Garrigue — variance, injectivity, and abstraction 13

Conclusion

– PR#5985 is now fixed, thanks to improved variance

inference

– Introduces some new restrictions on type definitions

– Could be alleviated by further extensions:

injectivity annotations and new types

– Abstraction loses too much information ?


