module Printexc:sig
..end
val to_string : exn -> string
Printexc.to_string e
returns a string representation of
the exception e
.val print : ('a -> 'b) -> 'a -> 'b
Printexc.print fn x
applies fn
to x
and returns the result.
If the evaluation of fn x
raises any exception, the
name of the exception is printed on standard error output,
and the exception is raised again.
The typical use is to catch and report exceptions that
escape a function application.val catch : ('a -> 'b) -> 'a -> 'b
Printexc.catch fn x
is similar to Printexc.print
, but
aborts the program with exit code 2 after printing the
uncaught exception. This function is deprecated: the runtime
system is now able to print uncaught exceptions as precisely
as Printexc.catch
does. Moreover, calling Printexc.catch
makes it harder to track the location of the exception
using the debugger or the stack backtrace facility.
So, do not use Printexc.catch
in new code.val print_backtrace : out_channel -> unit
Printexc.print_backtrace oc
prints an exception backtrace
on the output channel oc
. The backtrace lists the program
locations where the most-recently raised exception was raised
and where it was propagated through function calls.val get_backtrace : unit -> string
Printexc.get_backtrace ()
returns a string containing the
same exception backtrace that Printexc.print_backtrace
would
print.val record_backtrace : bool -> unit
Printexc.record_backtrace b
turns recording of exception backtraces
on (if b = true
) or off (if b = false
). Initially, backtraces
are not recorded, unless the b
flag is given to the program
through the OCAMLRUNPARAM
variable.val backtrace_status : unit -> bool
Printexc.backtrace_status()
returns true
if exception
backtraces are currently recorded, false
if not.val register_printer : (exn -> string option) -> unit
Printexc.register_printer fn
registers fn
as an exception
printer. The printer should return None
or raise an exception
if it does not know how to convert the passed exception, and Some
s
with s
the resulting string if it can convert the passed
exception. Exceptions raised by the printer are ignored.
When converting an exception into a string, the printers will be invoked
in the reverse order of their registrations, until a printer returns
a Some s
value (if no such printer exists, the runtime will use a
generic printer).
When using this mechanism, one should be aware that an exception backtrace
is attached to the thread that saw it raised, rather than to the exception
itself. Practically, it means that the code related to fn
should not use
the backtrace if it has itself raised an exception before.
Since 3.11.2
type
raw_backtrace
raw_backtrace
stores a backtrace in
a low-level format, instead of directly exposing them as string as
the get_backtrace()
function does.
This allows delaying the formatting of backtraces to when they are actually printed, which may be useful if you record more backtraces than you print.
Raw backtraces cannot be marshalled. If you need marshalling, you
should use the array returned by the backtrace_slots
function of
the next section.
Since 4.01.0
val get_raw_backtrace : unit -> raw_backtrace
Printexc.get_raw_backtrace ()
returns the same exception
backtrace that Printexc.print_backtrace
would print, but in
a raw format.val print_raw_backtrace : out_channel -> raw_backtrace -> unit
Printexc.print_backtrace
uses.val raw_backtrace_to_string : raw_backtrace -> string
Printexc.get_backtrace
uses.val get_callstack : int -> raw_backtrace
Printexc.get_callstack n
returns a description of the top of the
call stack on the current program point (for the current thread),
with at most n
entries. (Note: this function is not related to
exceptions at all, despite being part of the Printexc
module.)val set_uncaught_exception_handler : (exn -> raw_backtrace -> unit) -> unit
Printexc.set_uncaught_exception_handler fn
registers fn
as the handler
for uncaught exceptions. The default handler prints the exception and
backtrace on standard error output.
Note that when fn
is called all the functions registered with
at_exit
have already been called. Because of this you must
make sure any output channel fn
writes on is flushed.
Also note that exceptions raised by user code in the interactive toplevel are not passed to this function as they are caught by the toplevel itself.
If fn
raises an exception, both the exceptions passed to fn
and raised
by fn
will be printed with their respective backtrace.
Since 4.02.0
Those function allow to traverse the slots of a raw backtrace,
extract information from them in a programmer-friendly format.
type
backtrace_slot
backtrace_slot
represents a single slot of
a backtrace.val backtrace_slots : raw_backtrace -> backtrace_slot array option
None
if none of them
contain useful information.
In the return array, the slot at index 0
corresponds to the most
recent function call, raise, or primitive get_backtrace
call in
the trace.
Some possible reasons for returning None
are as follow:
-g
)ocamlc -g
)type
location = {
|
filename : |
|
line_number : |
|
start_char : |
|
end_char : |
start_char
and end_char
are positions relative to the beginning of the
line.module Slot:sig
..end
type
raw_backtrace_slot
Elements of this type can still be compared and hashed: when two
elements are equal, then they represent the same source location
(the converse is not necessarily true in presence of inlining,
for example).
Since 4.02.0
val raw_backtrace_length : raw_backtrace -> int
raw_backtrace_length bckt
returns the number of slots in the
backtrace bckt
.val get_raw_backtrace_slot : raw_backtrace -> int -> raw_backtrace_slot
get_slot bckt pos
returns the slot in position pos
in the
backtrace bckt
.val convert_raw_backtrace_slot : raw_backtrace_slot -> backtrace_slot
backtrace_slot
from a low-level
raw_backtrace_slot
.val exn_slot_id : exn -> int
Printexc.exn_slot_id
returns an integer which uniquely identifies
the constructor used to create the exception value exn
(in the current runtime).val exn_slot_name : exn -> string
Printexc.exn_slot_id exn
returns the internal name of the constructor
used to create the exception value exn
.