module Set:sig
..end
This module implements the set data structure, given a total ordering function over the set elements. All operations over sets are purely applicative (no side-effects). The implementation uses balanced binary trees, and is therefore reasonably efficient: insertion and membership take time logarithmic in the size of the set, for instance.
The Make
functor constructs implementations for any type, given a
compare
function.
For instance:
module IntPairs =
struct
type t = int * int
let compare (x0,y0) (x1,y1) =
match Pervasives.compare x0 x1 with
0 -> Pervasives.compare y0 y1
| c -> c
end
module PairsSet = Set.Make(IntPairs)
let m = PairsSet.(empty |> add (2,3) |> add (5,7) |> add (11,13))
This creates a new module PairsSet
, with a new type PairsSet.t
of sets of int * int
.
module type OrderedType =sig
..end
Set.Make
.
module type S =sig
..end
Set.Make
.
module Make: