Module Stdlib.Bigarray
module Bigarray: Bigarray
Element kinds
Bigarrays can contain elements of the following kinds:
- IEEE single precision (32 bits) floating-point numbers
(
Bigarray.float32_elt
), - IEEE double precision (64 bits) floating-point numbers
(
Bigarray.float64_elt
), - IEEE single precision (2 * 32 bits) floating-point complex numbers
(
Bigarray.complex32_elt
), - IEEE double precision (2 * 64 bits) floating-point complex numbers
(
Bigarray.complex64_elt
), - 8-bit integers (signed or unsigned)
(
Bigarray.int8_signed_elt
orBigarray.int8_unsigned_elt
), - 16-bit integers (signed or unsigned)
(
Bigarray.int16_signed_elt
orBigarray.int16_unsigned_elt
), - OCaml integers (signed, 31 bits on 32-bit architectures,
63 bits on 64-bit architectures) (
Bigarray.int_elt
), - 32-bit signed integers (
Bigarray.int32_elt
), - 64-bit signed integers (
Bigarray.int64_elt
), - platform-native signed integers (32 bits on 32-bit architectures,
64 bits on 64-bit architectures) (
Bigarray.nativeint_elt
).
Each element kind is represented at the type level by one of the
*_elt
types defined below (defined with a single constructor instead
of abstract types for technical injectivity reasons).
type
float32_elt =
| |
Float32_elt |
type
float64_elt =
| |
Float64_elt |
type
int8_signed_elt =
| |
Int8_signed_elt |
type
int8_unsigned_elt =
| |
Int8_unsigned_elt |
type
int16_signed_elt =
| |
Int16_signed_elt |
type
int16_unsigned_elt =
| |
Int16_unsigned_elt |
type
int32_elt =
| |
Int32_elt |
type
int64_elt =
| |
Int64_elt |
type
int_elt =
| |
Int_elt |
type
nativeint_elt =
| |
Nativeint_elt |
type
complex32_elt =
| |
Complex32_elt |
type
complex64_elt =
| |
Complex64_elt |
type ('a, 'b)
kind =
| |
Float32 : |
| |
Float64 : |
| |
Int8_signed : |
| |
Int8_unsigned : |
| |
Int16_signed : |
| |
Int16_unsigned : |
| |
Int32 : |
| |
Int64 : |
| |
Int : |
| |
Nativeint : |
| |
Complex32 : |
| |
Complex64 : |
| |
Char : |
To each element kind is associated an OCaml type, which is
the type of OCaml values that can be stored in the Bigarray
or read back from it. This type is not necessarily the same
as the type of the array elements proper: for instance,
a Bigarray whose elements are of kind float32_elt
contains
32-bit single precision floats, but reading or writing one of
its elements from OCaml uses the OCaml type float
, which is
64-bit double precision floats.
The GADT type ('a, 'b) kind
captures this association
of an OCaml type 'a
for values read or written in the Bigarray,
and of an element kind 'b
which represents the actual contents
of the Bigarray. Its constructors list all possible associations
of OCaml types with element kinds, and are re-exported below for
backward-compatibility reasons.
Using a generalized algebraic datatype (GADT) here allows writing well-typed polymorphic functions whose return type depend on the argument type, such as:
let zero : type a b. (a, b) kind -> a = function
| Float32 -> 0.0 | Complex32 -> Complex.zero
| Float64 -> 0.0 | Complex64 -> Complex.zero
| Int8_signed -> 0 | Int8_unsigned -> 0
| Int16_signed -> 0 | Int16_unsigned -> 0
| Int32 -> 0l | Int64 -> 0L
| Int -> 0 | Nativeint -> 0n
| Char -> '\000'
val float32 : (float, float32_elt) kind
See Bigarray.char
.
val float64 : (float, float64_elt) kind
See Bigarray.char
.
val complex32 : (Complex.t, complex32_elt) kind
See Bigarray.char
.
val complex64 : (Complex.t, complex64_elt) kind
See Bigarray.char
.
val int8_signed : (int, int8_signed_elt) kind
See Bigarray.char
.
val int8_unsigned : (int, int8_unsigned_elt) kind
See Bigarray.char
.
val int16_signed : (int, int16_signed_elt) kind
See Bigarray.char
.
val int16_unsigned : (int, int16_unsigned_elt) kind
See Bigarray.char
.
val int : (int, int_elt) kind
See Bigarray.char
.
val int32 : (int32, int32_elt) kind
See Bigarray.char
.
val int64 : (int64, int64_elt) kind
See Bigarray.char
.
val nativeint : (nativeint, nativeint_elt) kind
See Bigarray.char
.
val char : (char, int8_unsigned_elt) kind
As shown by the types of the values above,
Bigarrays of kind float32_elt
and float64_elt
are
accessed using the OCaml type float
. Bigarrays of complex kinds
complex32_elt
, complex64_elt
are accessed with the OCaml type
Complex.t
. Bigarrays of
integer kinds are accessed using the smallest OCaml integer
type large enough to represent the array elements:
int
for 8- and 16-bit integer Bigarrays, as well as OCaml-integer
Bigarrays; int32
for 32-bit integer Bigarrays; int64
for 64-bit integer Bigarrays; and nativeint
for
platform-native integer Bigarrays. Finally, Bigarrays of
kind int8_unsigned_elt
can also be accessed as arrays of
characters instead of arrays of small integers, by using
the kind value char
instead of int8_unsigned
.
val kind_size_in_bytes : ('a, 'b) kind -> int
kind_size_in_bytes k
is the number of bytes used to store
an element of type k
.
- Since 4.03.0
Array layouts
type
c_layout =
| |
C_layout_typ |
type
fortran_layout =
| |
Fortran_layout_typ |
To facilitate interoperability with existing C and Fortran code, this library supports two different memory layouts for Bigarrays, one compatible with the C conventions, the other compatible with the Fortran conventions.
In the C-style layout, array indices start at 0, and
multi-dimensional arrays are laid out in row-major format.
That is, for a two-dimensional array, all elements of
row 0 are contiguous in memory, followed by all elements of
row 1, etc. In other terms, the array elements at (x,y)
and (x, y+1)
are adjacent in memory.
In the Fortran-style layout, array indices start at 1, and
multi-dimensional arrays are laid out in column-major format.
That is, for a two-dimensional array, all elements of
column 0 are contiguous in memory, followed by all elements of
column 1, etc. In other terms, the array elements at (x,y)
and (x+1, y)
are adjacent in memory.
Each layout style is identified at the type level by the
phantom types Bigarray.c_layout
and Bigarray.fortran_layout
respectively.
The GADT type 'a layout
represents one of the two supported
memory layouts: C-style or Fortran-style. Its constructors are
re-exported as values below for backward-compatibility reasons.
type 'a
layout =
| |
C_layout : |
| |
Fortran_layout : |
val c_layout : c_layout layout
val fortran_layout : fortran_layout layout
Generic arrays (of arbitrarily many dimensions)
module Genarray:sig
..end
Zero-dimensional arrays
module Array0:sig
..end
Zero-dimensional arrays.
One-dimensional arrays
module Array1:sig
..end
One-dimensional arrays.
Two-dimensional arrays
module Array2:sig
..end
Two-dimensional arrays.
Three-dimensional arrays
module Array3:sig
..end
Three-dimensional arrays.
Coercions between generic Bigarrays and fixed-dimension Bigarrays
val genarray_of_array0 : ('a, 'b, 'c) Array0.t -> ('a, 'b, 'c) Genarray.t
Return the generic Bigarray corresponding to the given zero-dimensional Bigarray.
- Since 4.05.0
val genarray_of_array1 : ('a, 'b, 'c) Array1.t -> ('a, 'b, 'c) Genarray.t
Return the generic Bigarray corresponding to the given one-dimensional Bigarray.
val genarray_of_array2 : ('a, 'b, 'c) Array2.t -> ('a, 'b, 'c) Genarray.t
Return the generic Bigarray corresponding to the given two-dimensional Bigarray.
val genarray_of_array3 : ('a, 'b, 'c) Array3.t -> ('a, 'b, 'c) Genarray.t
Return the generic Bigarray corresponding to the given three-dimensional Bigarray.
val array0_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t
Return the zero-dimensional Bigarray corresponding to the given
generic Bigarray. Raise Invalid_argument
if the generic Bigarray
does not have exactly zero dimension.
- Since 4.05.0
val array1_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array1.t
Return the one-dimensional Bigarray corresponding to the given
generic Bigarray. Raise Invalid_argument
if the generic Bigarray
does not have exactly one dimension.
val array2_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array2.t
Return the two-dimensional Bigarray corresponding to the given
generic Bigarray. Raise Invalid_argument
if the generic Bigarray
does not have exactly two dimensions.
val array3_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array3.t
Return the three-dimensional Bigarray corresponding to the given
generic Bigarray. Raise Invalid_argument
if the generic Bigarray
does not have exactly three dimensions.
Re-shaping Bigarrays
val reshape : ('a, 'b, 'c) Genarray.t ->
int array -> ('a, 'b, 'c) Genarray.t
reshape b [|d1;...;dN|]
converts the Bigarray b
to a
N
-dimensional array of dimensions d1
...dN
. The returned
array and the original array b
share their data
and have the same layout. For instance, assuming that b
is a one-dimensional array of dimension 12, reshape b [|3;4|]
returns a two-dimensional array b'
of dimensions 3 and 4.
If b
has C layout, the element (x,y)
of b'
corresponds
to the element x * 3 + y
of b
. If b
has Fortran layout,
the element (x,y)
of b'
corresponds to the element
x + (y - 1) * 4
of b
.
The returned Bigarray must have exactly the same number of
elements as the original Bigarray b
. That is, the product
of the dimensions of b
must be equal to i1 * ... * iN
.
Otherwise, Invalid_argument
is raised.
val reshape_0 : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t
Specialized version of Bigarray.reshape
for reshaping to
zero-dimensional arrays.
- Since 4.05.0
val reshape_1 : ('a, 'b, 'c) Genarray.t -> int -> ('a, 'b, 'c) Array1.t
Specialized version of Bigarray.reshape
for reshaping to
one-dimensional arrays.
val reshape_2 : ('a, 'b, 'c) Genarray.t ->
int -> int -> ('a, 'b, 'c) Array2.t
Specialized version of Bigarray.reshape
for reshaping to
two-dimensional arrays.
val reshape_3 : ('a, 'b, 'c) Genarray.t ->
int -> int -> int -> ('a, 'b, 'c) Array3.t
Specialized version of Bigarray.reshape
for reshaping to
three-dimensional arrays.