• en

Chapter 7  The OCaml language

Foreword

This document is intended as a reference manual for the OCaml language. It lists the language constructs, and gives their precise syntax and informal semantics. It is by no means a tutorial introduction to the language: there is not a single example. A good working knowledge of OCaml is assumed.

No attempt has been made at mathematical rigor: words are employed with their intuitive meaning, without further definition. As a consequence, the typing rules have been left out, by lack of the mathematical framework required to express them, while they are definitely part of a full formal definition of the language.

Notations

The syntax of the language is given in BNF-like notation. Terminal symbols are set in typewriter font (like this). Non-terminal symbols are set in italic font (like  that). Square brackets […] denote optional components. Curly brackets {…} denotes zero, one or several repetitions of the enclosed components. Curly brackets with a trailing plus sign {…}+ denote one or several repetitions of the enclosed components. Parentheses (…) denote grouping.

12  Compilation units

unit-interface::= { specification  [;;] }  
 
unit-implementation::= [ module-items ]

Compilation units bridge the module system and the separate compilation system. A compilation unit is composed of two parts: an interface and an implementation. The interface contains a sequence of specifications, just as the inside of a sigend signature expression. The implementation contains a sequence of definitions and expressions, just as the inside of a structend module expression. A compilation unit also has a name unit-name, derived from the names of the files containing the interface and the implementation (see chapter 9 for more details). A compilation unit behaves roughly as the module definition

module unit-name : sig  unit-interface end = struct  unit-implementation end

A compilation unit can refer to other compilation units by their names, as if they were regular modules. For instance, if U is a compilation unit that defines a type t, other compilation units can refer to that type under the name U.t; they can also refer to U as a whole structure. Except for names of other compilation units, a unit interface or unit implementation must not have any other free variables. In other terms, the type-checking and compilation of an interface or implementation proceeds in the initial environment

name1 : sig  specification1 end …  namen : sig  specificationn end

where name1 …  namen are the names of the other compilation units available in the search path (see chapter 9 for more details) and specification1 …  specificationn are their respective interfaces.