Chapter 7 The OCaml language
Foreword
This document is intended as a reference manual for the OCaml language. It lists the language constructs, and gives their precise syntax and informal semantics. It is by no means a tutorial introduction to the language: there is not a single example. A good working knowledge of OCaml is assumed.
No attempt has been made at mathematical rigor: words are employed with their intuitive meaning, without further definition. As a consequence, the typing rules have been left out, by lack of the mathematical framework required to express them, while they are definitely part of a full formal definition of the language.
Notations
The syntax of the language is given in BNF-like notation. Terminal symbols are set in typewriter font (like this). Non-terminal symbols are set in italic font (like that). Square brackets […] denote optional components. Curly brackets {…} denotes zero, one or several repetitions of the enclosed components. Curly brackets with a trailing plus sign {…}+ denote one or several repetitions of the enclosed components. Parentheses (…) denote grouping.
2 Values
- 2.1 Base values
- 2.2 Tuples
- 2.3 Records
- 2.4 Arrays
- 2.5 Variant values
- 2.6 Polymorphic variants
- 2.7 Functions
- 2.8 Objects
This section describes the kinds of values that are manipulated by OCaml programs.
2.1 Base values
Integer numbers
Integer values are integer numbers from −230 to 230−1, that is −1073741824 to 1073741823. The implementation may support a wider range of integer values: on 64-bit platforms, the current implementation supports integers ranging from −262 to 262−1.
Floating-point numbers
Floating-point values are numbers in floating-point representation. The current implementation uses double-precision floating-point numbers conforming to the IEEE 754 standard, with 53 bits of mantissa and an exponent ranging from −1022 to 1023.
Characters
Character values are represented as 8-bit integers between 0 and 255. Character codes between 0 and 127 are interpreted following the ASCII standard. The current implementation interprets character codes between 128 and 255 following the ISO 8859-1 standard.
Character strings
String values are finite sequences of characters. The current implementation supports strings containing up to 224 − 5 characters (16777211 characters); on 64-bit platforms, the limit is 257 − 9.
2.2 Tuples
Tuples of values are written (v1, …, vn), standing for the n-tuple of values v1 to vn. The current implementation supports tuple of up to 222 − 1 elements (4194303 elements).
2.3 Records
Record values are labeled tuples of values. The record value written { field1 = v1; …; fieldn = vn } associates the value vi to the record field fieldi, for i = 1 … n. The current implementation supports records with up to 222 − 1 fields (4194303 fields).
2.4 Arrays
Arrays are finite, variable-sized sequences of values of the same type. The current implementation supports arrays containing up to 222 − 1 elements (4194303 elements) unless the elements are floating-point numbers (2097151 elements in this case); on 64-bit platforms, the limit is 254 − 1 for all arrays.
2.5 Variant values
Variant values are either a constant constructor, or a non-constant constructor applied to a number of values. The former case is written constr; the latter case is written constr (v1, ... , vn ), where the vi are said to be the arguments of the non-constant constructor constr. The parentheses may be omitted if there is only one argument.
The following constants are treated like built-in constant constructors:
Constant | Constructor |
false | the boolean false |
true | the boolean true |
() | the “unit” value |
[] | the empty list |
The current implementation limits each variant type to have at most 246 non-constant constructors and 230−1 constant constructors.
2.6 Polymorphic variants
Polymorphic variants are an alternate form of variant values, not belonging explicitly to a predefined variant type, and following specific typing rules. They can be either constant, written `tag-name, or non-constant, written `tag-name(v).
2.7 Functions
Functional values are mappings from values to values.
2.8 Objects
Objects are composed of a hidden internal state which is a record of instance variables, and a set of methods for accessing and modifying these variables. The structure of an object is described by the toplevel class that created it.